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                                                                                    ABSTRACT 

 

 

Nowadays computers are used to solve incredibly complex problems. But in order to 

manage a problem we should develop an algorithm. Sometimes the human brain is not 

able to accomplish this task. Moreover, exact algorithms might need centuries to solve a 

formidable problem. In such cases heuristic algorithms that find approximate solutions 

but have acceptable time and space complexity play indispensable role. In present, all 

known algorithms for NP-complete problems are requiring time that is exponential in 

the problem size. Heuristics are a way to improve time for determining an exact or 

approximate solution for NP-problems. In our paper we want to analyze what are the 

possible heuristics available for NP-problems and we explain the characteristics and 

performance of each heuristic. Finally we analyze efficient heuristic out of all available 

heuristics for different NP-problems. One objective is that, after applying different 

heuristics for a particular NP-problem, a set of guidelines can be given that how a 

particular category of heuristics is better for a particular set of problems. 
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                                                                                   CHAPTER 1     

                                                                          INTRODUCTION                                                                                                                 

 

1.1 Introduction 

The most important among a variety of topics that relate to computation are algorithm 

validation, complexity estimation and optimization. Wide part of theoretical computer 

science deals with these tasks. Complexity of tasks in general is examined studying the 

most relevant computational resources like execution time and space. The ranging of 

problems that are solvable with a given limited amount of time and space into well-

defined classes is a very intricate task, but it can help incredibly to save time and money 

spent on the algorithms design. Vast collections of papers were dedicated to algorithm 

development. A short historical overview of the fundamental issues in theory of 

computation can be found in [1]. We do not discuss precise definition of algorithm and 

complexity. The interested reader can apply for the information to one of the 

fundamental books on theory of algorithms, e.g. [2], [3]. 

Modern problems tend to be very intricate and relate to analysis of large data sets. Even 

if an exact algorithm can be developed its time or space complexity may turn out 

unacceptable. But in reality it is often sufficient to find an approximate or partial 

solution. Such admission extends the set of techniques to cope with the problem. We 

discuss heuristic algorithms which suggest some approximations to the solution of 

optimization problems. In such problems the objective is to find the optimal of all 

possible solutions that minimizes or maximizes an objective function. The objective 

function is a function used to evaluate a quality of the generated solution. Many real-

world issues are easily stated as optimization problems. The collection of all possible 

solutions for a given problem can be regarded as a search space, and optimization 

algorithms, in their turn, are often referred to as search algorithms. 

In computational complexity theory, the complexity class NP-complete (abbreviated 

NP-C or NPC, NP standing for Nondeterministic Polynomial time) is a class of 

problems having two properties: 

 Any given solution to the problem can be verified quickly (in polynomial time); 

the set of problems with this property is called NP.  
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 If the problem can be solved quickly (in polynomial time), then so can every 

problem in NP.  

Although any given solution to such a problem can be verified quickly, there is no 

known efficient way to locate a solution in the first place; indeed, the most notable 

characteristic of NP-complete problems is that no fast solution to them is known. That 

is, the time required to solve the problem using any currently known algorithm 

increases very quickly as the size of the problem grows. As a result, the time required to 

solve even moderately large versions of many of these problems easily reaches into the 

billions or trillions of years, using any amount of computing power available today. As 

a consequence, determining whether or not it is possible to solve these problems 

quickly is one of the principal unsolved problems in computer science today. 

While a method for computing the solutions to NP-complete problems using a 

reasonable amount of time remains undiscovered, computer scientists and programmers 

still frequently encounter NP-complete problems. An expert programmer should be able 

to recognize an NP-complete problem so that he or she does not unknowingly waste 

time trying to solve a problem which so far has eluded generations of computer 

scientists. Instead, NP-complete problems are often addressed by using approximation 

algorithms in practice. 

At present, all known algorithms for NP-complete problems require time that is 

superpolynomial in the input size, and it is unknown whether there are any faster 

algorithms. 

Algorithms are at the heart of problem solving in scientific computing and computer 

science. Unfortunately many of the combinatorial problems that arise in a 

computational context are NP-hard, so that optimal solutions are unlikely to be found in 

polynomial time. How can we cope with this intractability? One approach is to design 

algorithms that find approximate solutions guaranteed to be within some factor of the 

quality of the optimal solution. More recently, in large-scale scientific computing, even 

polynomial time algorithms that find exact solutions are deemed too expensive to be 

practical, and one needs faster (nearly linear time) approximation algorithms. We will 

consider the design of approximation algorithms for various graph-theoretical and 

combinatorial problems that commonly arise in scientific computing and computational 
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biology. These include set covers (vertex covers in hyper graphs), matching, coloring, 

and multiple sequence alignments in computational biology.  

The following techniques can be applied to solve computational problems in general, 

and they often give rise to substantially faster algorithms: 

 Approximation: Instead of searching for an optimal solution, search for an 

"almost" optimal one.  

 Randomization: Use randomness to get a faster average running time, and 

allow the algorithm to fail with some small probability. See Monte Carlo 

method.  

 Restriction: By restricting the structure of the input (e.g., to planar graphs), 

faster algorithms are usually possible.  

 Parameterization: Often there are fast algorithms if certain parameters of the 

input are fixed.  

 Heuristic: An algorithm that works "reasonably well" in many cases, but for 

which there is no proof that it is both always fast and always produces a good 

result. Metaheuristic approaches are often used.  

Approximate algorithms entail the interesting issue of quality estimation of the 

solutions they find. Taking into account that normally the optimal solution is unknown, 

this problem can be a real challenge involving strong mathematical analysis. In 

connection with the quality issue the goal of the heuristic algorithm is to find as good 

solution as possible for all instances of the problem. There are general heuristic 

strategies that are successfully applied to manifold problems.          

In computer science, a heuristic algorithm, or simply a heuristic, is an algorithm that is 

able to produce an acceptable solution to a problem in many practical scenarios, but for 

which there is no formal proof of its correctness. Alternatively, it may be correct, but 

may not be proven to produce an optimal solution, or to use reasonable resources. 

Heuristics are typically used when there is no known method to find an optimal 

solution, under the given constraints (of time, space etc.) or at all. 

Two fundamental goals in computer science are finding algorithms with provably good 

run times and with provably good or optimal solution quality. A heuristic is an 

algorithm that abandons one or both of these goals; for example, it usually finds pretty 

good solutions, but there is no proof the solutions could not get arbitrarily bad; or it 
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usually runs reasonably quickly, but there is no argument that this will always be the 

case. 

The term Heuristic is used for algorithms, which find solutions among all possible 

ones, but they do not guarantee that the best will be found; therefore they may be 

considered as approximate and not accurate algorithms. These algorithms, usually find 

a solution close to the best one and they find it fast and easily. Sometimes these 

algorithms can be accurate, that is they actually find the best solution, but the algorithm 

is still called heuristic until this best solution is proven to be the best. The method used 

from a heuristic algorithm is one of the known methods, such as greediness, but in order 

to be easy and fast the algorithm ignores or even suppresses some of the problem's 

demands. 

1.2 Organization of Thesis 

The thesis is organized as follows:  

Chapter-2 It presents some essential information about algorithms and computational 

complexity.  

Chapter-3 It Presents definitions of NP-problem and heuristics. Some intractable 

problems that could help to understand deeper importance of heuristics are also 

mentioned.  

Chapter-4 It presents problem statement that could analyses the problem statement that 

we are going deal. 

Chapter-5 It presents results & discussion. 

Finally, the last chapter is devoted to the conclusion. 
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                                                                                 CHAPTER 2       

                                       ALGORITHMS AND COMPLEXITY 

 

2.1 Introduction to Algorithms 

Classes of time complexity are defined to distinguish problems according to their 

―hardness‖[4].  

Class P consists of all those problems that can be solved on a deterministic Turing 

machine in polynomial time from the size of the input. Turing machines are an 

abstraction that is used to formalize the notion of algorithm and computational 

complexity.  

Class NP consists of all those problems whose solution can be found in polynomial 

time on a non-deterministic Turing machine. Since such a machine does not exist, 

practically it means that an exponential algorithm can be written for an NP problem, 

nothing is asserted whether a polynomial algorithm exists or not.  

A subclass of NP, class NP-complete includes problems such that a polynomial 

algorithm for one of them could be transformed to polynomial algorithms for solving all 

other NP problems. Finally, the class NP-hard can be understood as the class of 

problems that are NP-complete or harder. NP-hard problems have the same trait as NP-

complete problems but they do not necessary belong to class NP, that is class NP-hard 

includes also problems for which no algorithms at all can be provided. 

In order to justify application of some heuristic algorithm we prove that the problem 

belongs to the classes NP-complete or NP-hard. Most likely there are no polynomial 

algorithms to solve such problems; therefore, for sufficiently great inputs heuristics are 

developed. 

2.2 Complexity Classes 

Almost all the algorithms we have studied thus far have been polynomial-time 

algorithms. On inputs of size n, their worst–case running time is 0(n
k
) for some 

constant k. It is natural to wonder whether all problems can be solved in polynomial-

time. The answer is No.         
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 For example, there are problems, such as Turing‘s famous problem ―Halting problem‖, 

that can‘t be solved by any computer, no matter how much time is provided. There are 

also problems that can be solved, but not in time 0(n
k
) for any constant k. 

 Generally, we think of problems that are solvable by polynomial-time algorithms as 

being tractable, or easy, and problems that require super polynomial time as being 

intractable, ort hard. Generally there are four classes of problems based on time 

complexity. Classes of time complexity are sets of problems with the same bounds on 

execution time [4]. 

1. Class P 

2. Class Exp 

3. Class NP 

  Class NP-complete 

  Class NP-Hard 

Class P: The class p consists of those problems that are solvable in polynomial –

time.More specifically, they are problems that can be solved in time o(n
k
) for some 

constant k, where  n is  of the input to the problem . 

Example: Different Sorting and Searching Algorithms like 

 Binary search 

 Linear search 

 Insertion sort 

 Selection sort 

 Bubble sort, etc… 

 Class Exp: Exp is the class of problems that are solvable by exponential time 

algorithms. Formally, Exp is the class of abstract problems, which have an algorithm 

that solve it in time t(n) and t(n) ∈O(2
nk

) for some constant k. 

Clearly the class P is contained in the class Exp, that is, Exp is a more general class. 

The problems contained in Exp but not in P, are generally considered hard problems. 

 Classes NP and Co-NP: 

There are problems that only have known algorithmic solutions that grow in time at the 

rates of 0(n!), O (2
n

), and even 0(n
n

). These algorithms are known as non-polynomial 

(or just NP) time algorithms. 
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The class NP consists of those problems that are ―verifiable‖ in polynomial time. What 

we mean here is that the if we given a ―certificate‖ of a solution, then we could verify 

that the certificate is correct in time polynomial in the size of the input to the problem. 

NP is the class of decision problems that have a polynomial-time verification algorithm. 

Co-NP is the class of decision problems for which the corresponding complement 

problem belongs to NP.  

For instance, the problem ―Is a given integer number a composite number?‖ belongs to 

the class NP and the problem ―Is a given integer numbers a prime number?‖ belong to 

the class Co-NP.   

Needless to say, non-polynomial time solutions are to be avoided. Unfortunately, not all 

non-polynomial time solutions have known polynomial time equivalents. Worse, it is 

not possible to create a polynomial time solution for some problems. These problems 

and their algorithms are known non-polynomial time complete (or just NP-Complete). 

Class NP-Complete: NP + polynomial algorithm for one of the problem can be 

transformed to solve all other NP problems in polynomial time. 

We will state without proof that if any NP-complete problem can be solved in 

polynomial time, then every NP-complete problem has a polynomial time algorithm. 

Most theoretical computer scientists believe that the NP-complete problems are 

intractable. 

One of the most accepted ways to prove that a problem is hard is to prove it NP-

complete. If a decision problem is NP-complete we are almost certain that it cannot be 

solved optimally in polynomial time. 

If we are given an algorithm to solve a problem, we can often use it to solve other 

similar problems. Given two problems A and B, we can specify in advance how to use 

any algorithm for problem B to solve problem A. Such a specification is called a 

reduction from problem A to B. If we are able to prove that the process is correct, it is 

said that we have reduced A to B. 

In the 1970s and 1980s, a lot of decision problems for which the only accepted answers 

are either ―Yes‖ or ―No‖ were proved to be reducible to each other. All these problems 

have a common property: for every input to a problem with a ―Yes‖ solution there is a 

proof that the input has solution ―Yes‖ and this proof can be verified in polynomial 
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time. Any problem with this property is called an NP problem. We say this for decision 

problems, but that is easy to infer that all problems which can be solved by polynomial 

time algorithms satisfy this property. We say that P⊑NP where P is the set of problems 

which can be solved by polynomial time algorithms and NP is the set of NP problems. 

A problem which can be said to be ―harder‖ than all NP problems, that is a problem to 

which every problem in NP be reduced, is called NP-hard. If an NP-hard problem is 

itself an NP problem it is called NP-complete. Thus all NP-complete problems are 

equally hard to solve, since they are inter-reducible. If there is a polynomial time 

algorithm for an NP-complete problem then P = NP and every NP problem can be 

solved in polynomial time. Despite enormous efforts the question whether P = NP is 

still unanswered. The common belief nowadays is that P ⊑ NP and a big part of the 

research in Theoretical Computer Science has P ⊑ NP as a fundamental assumption. 

So according to the above discussion, we realize that there are some problems that 

cannot be approximated with efficient algorithms at all. On the other hand, it depends 

on the problem since we know that for some problems that are equally hard to solve 

optimally, some can be approximated very well with efficient algorithms. This makes it 

possible that some problems can be efficiently approximated using algorithms based on 

evolutionary techniques while others cannot [Mos01]. 

2.3 Examples of different NP-Complete problems  

2.3.1 Boolean satisfiability problem (SAT) 

 Satisfiability is the problem of determining if the variables of a given Boolean formula 

can be assigned in such a way as to make the formula evaluate to TRUE. Equally 

important is to determine whether no such assignments exist, which would imply that 

the function expressed by the formula is identically FALSE for all possible variable 

assignments. In this latter case, we would say that the function is unsatisfiable; 

otherwise it is satisfiable. To emphasize the binary nature of this problem, it is 

frequently referred to as Boolean or propositional satisfiability[5]. The shorthand 

"SAT" is also commonly used to denote it, with the implicit understanding that the 

function and its variables are all binary-valued. 
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Many (practical) applications: 

 Formal methods: 

     Hardware model checking; Software model checking; Termination analysis 

of Term-rewrite systems; Test pattern generation (testing of software & 

hardware);  

 Artificial intelligence: 

     Planning; Knowledge representation; Games (n-queens, sudoku, social 

golpher‘s,) 

 Bioinformatics: 

     Haplotype  inference; Pedigree checking; Maximum quartet consistency; etc. 

 Design automation: 

           Equivalence checking; Delay computation; Fault diagnosis; Noise analysis. 

 Security:   Cryptanalysis; Inversion attacks on hash functions; etc. 

 Computationally hard problems: Graph coloring; Traveling salesperson; etc. 

 Mathematical problems: Vander Wardens numbers; etc 

2.3.2 Fifteen puzzle problem 

In the 1870's the impish puzzle maker Sam Loyd caused quite a stir in the United 

States, Britain, and Europe with his now-famous 15-puzzle. In its original form, the 

puzzle consists of fifteen square blocks numbered 1 through 15 but otherwise identical 

and a square tray large enough to accommodate 16 blocks. The 15 blocks are placed in 

the tray as shown in Figure 1, with the lower right corner left empty. A legal move 

consists of sliding a block adjacent to the empty space into the empty space. Thus, from 

the starting placement, block 12 or 15 may be slid into the empty space. The object of 

the puzzle is to use a sequence of legal moves to switch the positions of blocks 14 and 

15 while returning all other blocks to their original positions [6]. 

The n-puzzle is known in various versions, including the 8 puzzle [8], the 15 puzzle, 

and with various names. It is a sliding puzzle that consists of a frame of numbered 

square tiles in random order with one tile missing. If the size is 3×3, the puzzle is called 

the 8-puzzle or 9-puzzle, and if 4×4, the puzzle is called the 15-puzzle or 16-puzzle. 

The object of the puzzle is to place the tiles in order (see diagram) by making sliding 

moves that use the empty space. 
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The n-puzzle is a classical problem for modeling algorithms involving heuristics. 

Commonly used heuristics for this problem include counting the number of misplaced 

tiles and finding the sum of the Manhattan distances between each block and its 

position in the goal configuration. Note that both are admissible, i.e., they never 

overestimate the number of moves left, which ensures optimality for certain search 

algorithms such as A*.                           

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15  

             Figure 2.1. The starting position for the 15-puzzle.  

2.3.3 The Temporal Knapsack Problem 

The knapsack problem is a problem in combinatorial optimization. It derives its name 

from the following maximization problem of the best choice of essentials that can fit 

into one bag to be carried on a trip. Given a set of items, each with a weight and a 

value, determine the number of each item to include in a collection so that the total 

weight is less than a given limit and the total value is as large as possible. 

A similar problem often appears in business, combinatory, complexity theory, 

cryptography and applied mathematics. 

Definition: 

In the following, we have n kinds of items, 1 through n. Each kind of item j has a value 

pj and a weight wj. We usually assume that all values and weights are nonnegative. The 

maximum weight that we can carry in the bag is W. 

The 0-1 knapsack problem [7] restricts the number xj of copies of each kind of item to 

zero or one. Mathematically the 0-1-knapsack problem can be formulated as: 

Maximize  

Subject to  
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The bounded knapsack problem restricts the number xj of copies of each kind of item 

to a maximum integer value bj. Mathematically the bounded knapsack problem can be 

formulated as: 

Maximize  

Subject to  

The unbounded knapsack problem places no upper bound on the number of copies of 

each kind item.  

Different variations: 

 Unbounded knapsack problem: no limits on the  number of each item 

 0-1 knapsack problem: number of each item is either 0 or 1. 

 Fractional knapsack problem: number of each item can be a fractional. 

Solutions to general knapsack problem: 

 Greedy algorithm approach 

 Dynamic programming approach 

 Genetic algorithm approach 

2.3.4 Minesweeper 

Over summer, Andy Miller and Sam Hazlehurst decided that they would realize their 

childhood dream of founding a game company. Their plan was to choose a niche so 

small that they couldn‘t fail to dominate it: Minesweeper games. When Yours & Mine 

Software finally shipped. 

Minesweeper is easiest to learn by playing. For a good, if somewhat unstable, 

implementation, check out xmine. Minesweeper consists of a 2-dimensional grid of 

squares. Each square is originally covered; under some squares there are mines. When 

you uncover a square with a mine under it, you lose. When you uncover a square that 

doesn‘t have a mine under it, the game displays the number of mined squares adjacent 

to the current square (a number from 0 to 8). If this number is zero, the game must 

perform the uncover operation on all squares adjacent to it. A user flags a square to 

indicate that she thinks that there is a mine underneath the square. When all the squares 

on the board, which are not mines, have been uncovered, the player has Won the game.    
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Figure 2.2: The two pictures show what a Minesweeper game looks like at the 

beginning and at the end of a completed game. 

The game has an 8x 8 [8] beginner level; a 16 x 16 intermediate level; and a 16 x 30 

advanced level. The game also keeps track of the time that a player takes to complete a 

game, and uses these times to maintain three high-score lists (one for each level)[9]. 

High score lists consist of the ten highest scores and the players who achieved them. 

2.3.5 Tetris 

Tetris is a puzzle video game. When the game starts, only an empty board with borders 

drawn around its edges should be displayed. A Tetris piece, chosen randomly from the 

seven possible Tetris pieces shown below should appear at the top of the board. This 

piece should fall by moving down the board, one square at a time. A piece cannot fall 

into a square already occupied by a previously fallen piece. When a piece can fall no 

further, it should stop moving; a new random piece should then appear at the top of the 

board and begin to fall. As pieces fall, rows (or horizontal lines) of occupied squares 

spanning the board's width may form. When such a line is formed, it disappears and all 

the squares above it fall down one line to fill the newly empty row. This process 

continues until there is either a piece in the top row of the board or a new piece appears 

and has no room to fall because it is already resting on a previously fallen piece. The 

game is then over, and everything on the board should stop completely. A message 

should be displayed to let the user know that the game is over[10]. 

                          

 Figure 2.3:   The seven basic Tetris pieces: each an arrangement of four connected 

squares. 
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While a piece is falling, the player may rotate or shift it by pressing certain keys on the 

key board. Pressing ‗j‘ should shift the piece one square to the left. Pressing ‗l‘ should 

shift the piece one square to the right. Pressing ‗k‘ should rotate the piece 

counterclockwise by ninety degrees. At regular intervals, the piece should simply fall 

vertically one square at a time. The player should be able to drop the piece by pressing 

the space bar. By dropping a piece, the player forfeits his/her chance to manipulate the 

piece any further and the piece simply falls as far as it can. The player should be able to 

cause the piece to drop more quickly by pressing ‗m‘. The player should be able to 

pause the game at any time by pressing ‗p‘. When the game is paused, the player should 

not be able to manipulate the piece in any way. Pressing ‗p‘ again should allow the user 

to resume play. When the game is paused, some sort of notification should be given to 

the user, most likely using either a JLabel or using your Graphics2D to paint some 

Color Text. 

                                                 

   Figure 2.4: Tetris on the Nintendo Game Boy system, which uses the original 

randomizer. 

Likewise, when there is a game over, the user should receive some sort of notification, 

and no pieces should be allowed to be manipulated.  

2.3.6  Hamiltonian cycle problem 

In the mathematical field of graph theory the Hamiltonian path problem and the 

Hamiltonian cycle problem are problems of determining whether a Hamiltonian path or 

a Hamiltonian cycle exists in a given graph (whether directed or undirected). Both 

problems are NP-complete. The problem of finding a Hamiltonian cycle or path is in 

FNP. 

There is a simple relation between the two problems. The Hamiltonian path problem for 

graph G is equivalent to the Hamiltonian cycle problem in a graph H obtained from G 

by adding a new vertex and connecting it to all vertices of G. 
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Hamiltonian Cycle is in NP because a given list of vertices can be checked for a tour in 

polynomial time. Now, we want to show that 3-SAT reduces to Hamiltonian Cycle in 

polynomial time. Thus, we need some way of mapping the variables and clauses to a 

Hamiltonian cycle problem graph [11]. 

                                     

                   Figure 2.5: The mapping of Hamilton Cycle Problem Graph. 

While this graph is complex at first, look at how it is built. For each variable, there is a 

row of at most 2n nodes; where n is the number of clauses. Two of these nodes are 

connected to each clause if the variable appears in that clause. The ends of each row of 

nodes are connected to the ends of the next. Walking left to right down a row means 

―true,‖ while right to left means ―false.‖ In this way, a Hamiltonian cycle through the 

graph represents an assignment of truth values to the variables in a list of 3-SAT 

clauses. 

2.3.7 Traveling salesman problem(TSP) 

The Travelling Salesman Problem (TSP) is a simple combinatorial problem [12]. It can 

be stated Very simply: 

 A salesman spends his time visiting n cities (or nodes) . In one tour he visits 

each city just Once, and finishes up where he started. In what order should he 

visit them to minimize the distance traveled? 

 There exists an edge between every pair of cities expressing the distance 

between the two Corresponding cities. 

 If there are only 2 cities then the problem is trivial, since only one tour is 

possible. In either case the number of solutions becomes extremely large for 

large n, so that an exhaustive search is impractical. 



15 
 

Over the past 15 years, the record of for the largest nontrivial TSP instance solved to 

optimality has increased from 318 cities ( 1980) to 2392 cities ( 1987) to 7397 cities( 

1994). 

The last result has taken 3-4 years on a network of machines. 

2.3.8 Subset sum problem 

In computer science, the subset sum problem is an important problem in complexity 

theory and cryptography. The problem is this: given a set of integers, does the sum of 

some non-empty subset equal exactly zero? For example, given the set { −7, −3, −2, 5, 

8}, the answer is YES because the subset { −3, −2, 5} sums to zero. The problem is NP-

Complete. 

Definition: A knapsack vector is a set A of positive and pairwise different integers such 

that 

                           A = (a1, a2,..., an),    ai != aj   if   i != j 

The subset sum problem is the following: Given  

A knapsack vector A = (a1, a2... an) and a positive integer s, called the sum 

The question is then 

             Is there a subset A' of A with SUMa¹ A'(a') = s, or equivalent:  

             Does there exist a vector X = (x1, x2... xn), xi in {0, 1}, with AX = s?  

      Where AX means a1x1 + a2x2 + ... + anxn . 

The problem just described is a decision problem. If a solution is desired, the problem 

becomes a functional problem: the task is to compute a solution vector X = (x1, x2... xn), 

xi in {0, 1} such that AX = s, provided a solution exists.  

The functional problem of a knapsack vector A together with a sum s is denoted by (A, 

s). Example:  

Let A be the set (15, 22, 14, 26, 32, 9, 16, 8) and let s be 53. Then a solution to (A, 53) 

is given by the vector X = (1, 1, 0, 0, 0, 0, 1, 0), because AX = a1 + a2 + a7 = 15 + 22 

+16 = 53. The corresponding subset is A' = (15, 22, 16). 

 In general there may exist several solutions to (A, s) as in this example. Another 

solution for (A, 53) is X = (0, 1, 1, 0, 0, 1, 0, 1) with the subset A' = (22, 14, 9, 8).  

No polynomial algorithm is known solving the general subset sum problem. The subset 

sum problem is in the complexity class NP. The decision problem is NP-complete and 

the corresponding functional problem is NP-hard. The decision problem and the 
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functional problem are equivalent with respect to the complexity meaning if a 

polynomial algorithm is known solving the decision problem, this algorithm can also be 

used for solving the functional problem and vice versa.  

2.3.9 Subgraph isomorphism problem 

Mathematical motivation 

 NP-complete problems are a challenge to theoretical computer science 

Non-mathematical motivation 

 Pattern recognition and computer vision 

 Computer-aided design 

 Image processing 

 Graph grammars and graph transformation 

 Biocomputing 

 Subgraph isomorphism is an important and very general form of exact pattern 

matching 

 String searching 

 Sequence alignment 

 Tree comparison 

 Pattern matching on graphs 

 

Example. Tree isomorphism 

                          

                                        Figure 2.6: Shows Isometric Trees 
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Example. Graph isomorphism 

                            

                                           Figure 2.7: Shows Isometric Graphs 

2.3.10 Clique Problem 

In computational complexity theory, the clique problem is a graph-theoretic NP-

complete problem. The problem was one of Richard Karp's original 21 problems shown 

NP-complete in his 1972 paper "Reducibility among Combinatorial Problems". This 

problem was also mentioned in Cook's paper introducing the theory of NP-complete 

problems. A clique in a graph is a set of pairwise adjacent vertices, or in other words, an 

induced subgraph which is a complete graph. In the graph at the right, vertices 1, 2 and 

5 form a clique, because each has an edge to all the others. 

                                                          

                                                Figure 2.8: Shows a Clique Problem of size 3 

Then, the clique problem is the problem of determining whether a graph contains a 

clique of at least a given size k. Once we have located k or more vertices which form a 

clique, it's trivial to verify that they do, which is why the clique problem is in NP. The 
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corresponding optimization problem, the maximum clique problem, is to find the 

largest clique in a graph. 

2.3.11  Vertex Cover Problem 

In computer science, the vertex cover problem or node cover problem is an NP-

complete problem and was one of Karp's 21 NP-complete problems. It is often used in 

complexity theory to prove NP-hardness of more complicated problems. 

Definition: A vertex cover for an undirected graph G = (V,E) is a subset S of its vertices 

such that each edge has at least one endpoint in S. In other words, for each edge ab in E, 

one of a or b must be an element of S.  

Example: In the graph on the right, {1,3,5,6} is an example of a vertex cover of size 4. 

However, it is not a smallest vertex cover since there exist vertex covers of size 3, such 

as {2,4,5} and {1,2,4}. 

                               

                      Figure 2.9: Shows different vertex vectors. 

The vertex cover problem is the optimization problem of finding a smallest vertex 

cover in a given a graph. INSTANCE: Given a graph G 

                       OUTPUT: Smallest number k such that there is a vertex cover S for G of 

size k. 

Equivalently, the problem can be stated as a decision problem: 

INSTANCE: Graph G and positive integer k. 

QUESTION: Is there a vertex cover S for G of size at most k? 

Vertex cover is closely related to the Independent Set problem. A set of vertices S is a 

vertex cover if and only if its complement 𝑆 = 𝑉\𝑆 is an independent set. It follows that 

a graph with n vertices has a vertex cover of size k if and only if the graph has an 

independent set of size n − k. In this sense, the two problems are dual to each other. 
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2.3.12 Independent Set Problem  

In mathematics, the Independent Set Problem (IS) is a well-known problem in graph 

theory and combinatorics. The independent set problem is known to be NP-complete. It 

is almost identical to the Clique Problem. 

Given a graph G, an independent set is a subset of its vertices that are pairwise not 

adjacent. In other words, the subgraph induced by these vertices has no edges, only 

isolated vertices. Then, the independent set problem asks: given a graph G and a 

positive integer k, does G have an independent set of cardinality at least k? 

The corresponding optimization problem is the maximum independent set problem, 

which attempts to find the largest independent set in a graph. Given a solution to the 

decision problem, binary search can be used to solve the optimization problem with 

O(log |V|) invocations of the decision problem's solution. The optimization problem is 

known to have no constant-factor approximation algorithm if P≠NP. Independent set 

problems and clique problems may be easily translated into each other: an independent 

set in a graph G is a clique in the complement graph of G, and vice versa. 

                                          

                            Figure 2.10: Shows the relation between different NP-problems 
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2.4 Hierarchy of complexity classes  

                              

Figure 2.11: Shows the known relationships between the complexity classes mentioned 

above. The following are the major unsolved questions: 

 P=NP? 

 NP=Co-NP? 

 P=NP\Co-NP? 

2.5 NP-Problems in different fields 

 Aerospace engineering: optimal mesh partitioning for finite elements. 

 Biology: protein folding. 

 Chemical engineering: heat exchanger network synthesis. 

 Civil engineering: equilibrium of urban traffic flow. 

 Economics: computation of arbitrage in financial markets with friction. 

 Electrical engineering: VLSI layout. 

 Environmental engineering: optimal placement of contaminant sensors. 

 Financial engineering: find minimum risk portfolio of given return. 

 Game theory: find Nash equilibrium that maximizes social welfare. 

 Genomics: phylogeny reconstruction. 

 Mechanical engineering: structure of turbulence in sheared flows. 

 Medicine: reconstructing 3-D shape from biplane angiocardiogram. 

 Operations research: optimal resource allocation. 

 Physics: partition function of 3-D Ising model in statistical mechanics. 

 Politics: Shapley-Shubik voting power. 

 Pop culture: Minesweeper consistency. 
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                                                                                                                                      CHAPTER 3 

                                                      HEURISTIC ALGORITHMS 

 

3.1 What is Heuristic? 

A heuristic algorithm is an algorithm that using a strategy that does not examine all 

possible solutions to a problem. Heuristic algorithms make no attempt to find the 

perfect solution to the problem. Instead, heuristic algorithms look for a "good enough" 

solution in an acceptable amount of time. A heuristic algorithm is one that will provide 

a solution close to the optimal, but may or may not be optimal. The concept of heuristic 

solutions to problems normally solved via non-polynomial time algorithms has changed 

the way programmers regard NP and NP-Complete problems. 

In computer science, a Heuristic Algorithm or simply a Heuristic is an algorithm that 

ignores whether the solution to the problem can be proven to be correct, but which 

usually produces a good solution or solves a simpler problem that contains or intersects 

with the solution of the more complex problem. Heuristics are typically used when 

there is no known way to find an optimal solution, or when it is desirable to give up 

finding the optimal solution for an improvement in run time. 

Two fundamental goals in computer science are finding algorithms with provably good 

run times and with provably good or optimal solution quality. A Heuristic is an 

algorithm that abandons one or both of these goals; for example, it usually finds pretty 

good solutions, but there is no proof the solutions could not get arbitrarily bad; or it 

usually runs reasonably quickly, but there is no argument that this will always be the 

case. 

For instance, say you are packing odd-shaped items into a box. Finding a perfect 

solution is a hard problem: there is essentially no way to do it without trying every 

possible way of packing them. What most people do, then, is "put the largest items in 

first, then fit the smaller items into the spaces left around them." This will not 

necessarily be perfect packing, but it will usually give packing that is pretty good. It is 

an example of a heuristic solution. 
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The principal advantages of heuristic algorithms are that such algorithms are (often) 

conceptually simpler and (almost always) much cheaper computationally than optimal 

algorithms. 

Example: Assignment Problem 

Consider the following problem: 3 men are to be assigned to 3 jobs - where the 

assignment cost is given by the matrix below: 

                 Job 

               1   2    3 

Man   A 1   3    4 

          B 3   7    4 

          C 3   4    2 

Only one man can be assigned to one job and all the men should be assigned. What 

would be a heuristic algorithm for this problem?  

We should stress here that a heuristic algorithm should be capable of being applied to 

the problem even if the costs in the above matrix are changed (i.e. a heuristic algorithm 

is a set of general rules for solving the problem that are independent of the particular 

data case being considered).  

Heuristic for the Assignment Problem: One (simple) heuristic for the assignment 

problem would be: choose a man and a job at random. Assign the chosen man to the 

chosen job. Delete the chosen man and the chosen job from the problem and repeat with 

this new (smaller) problem. 

This heuristic does not use any of the cost information and so we would not expect it to 

give very good results.  

Note however the idea of repetition. This is a common concept in heuristic algorithms 

(both because it eases the task of programming the heuristic, and because if a certain 

algorithmic step is a good idea then why not repeats it?).  

A better heuristic might be: choose the smallest cost in the cost matrix (ties broken 

arbitrarily) and assign the corresponding man to the corresponding job - delete them 

from the problem and repeat with this new (smaller) problem. This heuristic would give 

the solution: 
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Cost 1   Assign A to job 1 

Cost 2   Assign C to job 3 

Cost 7   Assign B to job 2 

Total cost 10 

This illustrates a problem that often occurs with heuristics in that by the third 

assignment (of B to job 2) we have been "painted into a corner" by previous 

assignments and have little or no choice left (with the result that we have to assign B to 

job 2 at relatively high cost). Because of this problem a common idea with heuristics is 

the concept of interchange - the basic idea here is to juggle with the current solution to 

see if we can improve it e.g. with the solution above could we improve it by, for 

example, swapping the assignments of A and C thereby assigning A to job 3 and C to 

job 1? Here this swap is not worthwhile but some swaps (interchanges) are e.g. swap 

the assignments of A and B.  

Note particularly here that we designed the above heuristic without ever having a 

mathematical formulation of the problem. It is difficult to imagine the variety of 

existing computational tasks and the number of algorithms developed to solve them. 

Algorithms that either give nearly the right answer or provide a solution not for all 

instances of the problem are called heuristic algorithms. This group includes a plentiful 

spectrum of methods based on traditional techniques as well as specific ones.  

3.2 Different Heuristic Strategies 

3.2.1 Exhaustive search: The simplest of search algorithms is exhaustive search that 

tries all possible solutions from a predetermined set and subsequently picks the best 

one. Many problems have complexity worse than polynomial, such as the recursive 

Towers of Hanoi, which is O(2
n
). Some are inherently expensive, such as finding all 

permutations of a string of n characters, which is O(n!). Faced with an expensive 

algorithm, one should look for techniques to reduce the work done. We shall consider 

this with the example of a game-playing strategy that uses a search tree to look ahead 

some number of moves to determine the best move. 
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Example: A) Depth-First Search 

 Always explore first child next 

 Evaluate other children before root 

 Use stack as data structure to hold pending nodes (or use recursive code) 

 Goes deep into search tree quickly 

 If tree has infinite levels, DFS may not terminate 

 Aggressive attack, good if finite depth and multiple solutions 

Order of Evaluation of Nodes in Search Tree 

                

            Figure 3.1: Shows order oh evaluation of nodes in DFS 

B) Breadth-First Search 

          Explore all nodes at given level before descending to next 

 Use queue as data structure 

 BFS is slower but safer than DFS, especially if there is no 

guarantee on number of levels in search tree 

Order of Evaluation of Nodes in Search Tree 

                 

                         Figure 3.2: Shows order of evolution of nodes in BFS 
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3.2.2 Local Search 

Local Search is a version of exhaustive search that only focuses on a limited area of the 

search space. Local search can be organized in different ways. Popular hill-climbing 

techniques belong to this class. Such algorithms consistently replace the current 

solution with the best of its neighbours if it is better than the current.  

In Hill Climbing the basic idea is to always head towards a state which is better than 

the current one. So, if you are at town A and you can get to town B and town C (and 

your target is town D) then you should make a move if town B or C appear nearer to 

town D than town A does. In steepest ascent hill climbing you will always make your 

next state the best successor of your current state, and will only make a move if that 

successor is better than your current state.  

This can be described as follows: 

 Start with current-state = initial-state. 

 Until current-state = goal-state OR there is no change in current-state do: 

 Get the successors of the current state and use the evaluation function to assign a 

score to each successor. 

 If one of the successors has a better score than the current-state then set the new 

current-state to be the successor with the best score. 

Note that the algorithm does not attempt to exhaustively try every node and path, so no 

node list or agenda is maintained - just the current state. If there are loops in the search 

space then using hill climbing you shouldn't encounter them - you can't keep going up 

and still get back to where you were before. Hill climbing terminates when there are no 

successors of the current state, which are better than the current state itself. 

3.2.3 Divide and Conquer 

Divide and Conquer algorithms try to split a problem into smaller problems that are 

easier to solve. Solutions of the small problems must be combinable to a solution for the 

original one. This technique is effective but its use is limited because there is no a great 

number of problems that can be easily partitioned and combined in a such way. 

Examles: 

 Binary search 

 Powering a number 

 Fibonacci numbers 

 Matrix multiplication 

 Stassen‘s algorithm, VLSI tree layout, etc…… 
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3.2.4 Branch-and-Bound 

Branch-and-Bound technique is a critical enumeration of the search space. It 

enumerates, but constantly tries to rule out parts of the search space that cannot contain 

the best solution. 

Example: 4-Queens Problem 

FIFO branch-and-bound algorithm  

 Initially, there is only one live node; no queen has been placed on the 

chessboard 

 The only live node becomes E-node 

 Expand and generate all its children; children being a queen in column 1, 2, 3, 

and 4 of row 1 (only live nodes left) 

 Next E-node is the node with queen in row 1 and column 1 

 Expand this node, and add the possible nodes to the queue of live nodes 

 Bound the nodes that become dead nodes 

Compare with backtracking algorithm 

 Backtracking is superior method for this search problem 

Where  

     Live node is a node that has been generated but whose children have not yet been 

generated. 

     E-node is a live node whose children are currently being explored. In other words, 

an E- node is a node currently being expanded. 

         Dead node is a generated node that is not to be expanded or explored any further. 

All children of a dead node have already been expanded. 

       Branch-and-bound refers to all state space search methods in which all children of 

an E-node are generated before any other live node can become the E-node 

3.2.5 Dynamic Programming  

Dynamic Programming is an exhaustive search that avoids re-computation by storing 

the solutions of sub problems. The key point for using this technique is formulating the 

solution process as a recursion. Dynamic Programming is a recursive method for 

solving sequential decision problems (hereafter abbreviated as SDP). Also known as 

backward induction, it is used to find optimal decision rules in ―games against nature‖ 

and subgame perfect equilibria of dynamic multi-agent games, and competitive 

equilibria in dynamic economic models. Dynamic programming has enabled 

economists to formulate and solve a huge variety of problems involving sequential 
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decision making under uncertainty, and as a result it is now widely regarded as the 

single most important tool in economics. 

Examples: a). Longest Common Subsequence (LCS) 

                              Given two sequences x [1. . m]and y[1 . . n], find a longest 

subsequence    common to  them both. 

                  b). Optimal Substructure 

                                         

                                                    Figure 3.3 

    Figure 3.3. Finding the shortest path in a graph using optimal substructure; a straight 

line indicates a single edge; a wavy line indicates a shortest path between the two 

vertices it connects (other nodes on these paths are not shown); the bold line is the 

overall shortest path from start to goal. 

                 c). Overlapping Sub problems (Fibonacci sequence) 

3.2.6 Greedy Technique 

A popular method to construct successively space of solutions is greedy technique, that 

is based on the evident principle of taking the (local) best choice at each stage of the 

algorithm in order to find the global optimum of some objective function. 

 A technique used in solving optimization problems. Typically, we are given a set of n 

inputs and the goal is to find a subset (or some output) that satisfies some constraints. 

Any subset (or output) that satisfies these constraints is called a feasible solution. In an 

optimization problem, we need to find a feasible solution that maximizes or minimizes 

a given objective function. A feasible solution that does this is called an optimal 

solution. The greedy technique works in stages, considering one input at a time 

(typically in some clever order). At each stage, a decision is made depending on 

whether it is best at this stage. For example, a simple criterion can be whether adding 

the current input will lead to an infeasible solution or not. Thus, a locally optimal 

choice is made in the hope that it will lead to a globally optimal solution. 
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Basic steps to finding efficient greedy algorithms: 

 Start by finding a dynamic programming style solution 

 Prove that at each step of the recursion, the min/max can be satisfied by a 

―greedy choice‖ (greedy substructure) 

  Show that only one recursive call needs to be made once the greedy choice is 

assumed. This is often natural when all the recursive calls are made by the 

min/max. 

  Find the recursive solution using the greedy choice 

 Convert to an iterative algorithm if possible 

More generally, taking the direct approach: 

  Show the problem is reduced to a sub problem via a greedy choice 

  Prove there is an optimal solution containing the greedy choice 

  Prove that combining the greedy choice with an optimal solution for the 

remaining sub problem yields an optimal solution 

Example: 

 For the MST problem: Prim‘s and Kruskal‘s algorithms 

 For the SSSP problem: Dijkstra‘s algorithm 

 Remember, Dijkstra only works for graphs with no negative edge weights. 

Usually heuristic algorithms are used for problems that cannot be easily solved. 

3.3 Heuristic Techniques 

Branch-and-bound technique and dynamic programming are quite effective but their 

time-complexity often is too high and unacceptable for NP-complete tasks. 

3.3.1 Hill-Climbing 

Hill-climbing algorithm is effective, but it has a significant drawback called 

premature convergence. Since it is ―greedy‖, it always finds the nearest local optima of 

low quality. The goal of modern heuristics is to overcome this disadvantage. 

Premature convergence: When a genetic algorithms population converges to 

something, which is not the solution, we wanted. 
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3.3.2 Simulated Annealing 

Simulated annealing algorithm [13], invented in 1983, uses an approach similar to hill 

climbing, but occasionally accepts solutions that are worse than the current. The 

probability of such acceptance is decreasing with time. 

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the global 

optimization problem, namely locating a good approximation to the global minimum of 

a given function in a large search space. It is often used when the search space is 

discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated 

annealing may be more effective than exhaustive enumeration — provided that the goal 

is merely to find an acceptably good solution in a fixed amount of time, rather than the 

best possible solution. 

The name and inspiration come from annealing in metallurgy, a technique involving 

heating and controlled cooling of a material to increase the size of its crystals and 

reduce their defects. The heat causes the atoms to become unstuck from their initial 

positions (a local minimum of the internal energy) and wander randomly through states 

of higher energy; the slow cooling gives them more chances of finding configurations 

with lower internal energy than the initial one. 

Some Real Applications of Simulated Annealing: 

 Determining the sequence of observations for an automated astronomical 

telescope. 

 Computer Aided Geometric Design. 

 Optimization of Econometric Statistical Functions. 

 Games with random moves determined by the simulated annealing algorithm. 

 Arranging connections on chips and switching devices in telephone networks.  

The SA algorithm: In the Simulated Annealing algorithm, an objective function to be 

minimized is defined. Here it will be the total path length through a set of points. The 

distance between each pair of points is equivalent to the "energy" of a molecule. Then, 

"temperature" is the average of these lengths. Starting from an initial point, the 

algorithm swaps a pair of points and the total "energy" of the path is calculated.  
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3.3.3 Tabu Search 

Tabu search [14] extends the idea to avoid local optima by using memory structures. 

The problem of simulated annealing is that after‖jump‖ the algorithm can simply repeat 

its own track. Tabu search prohibits the repetition of moves that have been made 

recently. 

Webster‘s dictionary defines the word tabu or taboo to mean ―banned on grounds of 

morality or taste or as constituting a risk...‖. Tabu Search (TS) is an optimization 

method designed to help a search negotiate difficult regions (i.e. to escape from local 

minima or to cross-infeasible regions of the search space) by imposing restrictions. It 

was originally developed as a method for solving combinatorial optimization problems 

(these are problems where the control variables are some form of ordered list — the 

Travelling Salesman Problem is the classic example), but variants to solve continuous 

and integer optimization problems have also been developed. 

Example: The Classical Vehicle Routing Problem: 

Vehicle Routing Problems have very important applications in the area of distribution 

management.  As a consequence, they have become some of the most studied problems 

in the combinatorial optimization literature and large number of papers and books deal 

with the numerous procedures that have been proposed to solve them. These include 

several TS implementations that currently rank among the most effective. The Classical 

Vehicle Routing Problem (CVRP) is the basic variant in that class of problems.  It can 

formally be defined as follows.  Let G = (V, A) be a graph where V is the vertex set and 

A is the arc set.  One of the vertices represents the depot at which a fleet of m identical 

vehicles of capacity Q is based, and the other vertices customers that need to be 

serviced.  With each customer vertex vi are associated a demand qi and a service time 

ti.  With each arc (vi, vj) of A are associated a cost cij and a travel time tij.  The CVRP 

consists in finding a set of routes such that: 

 Each route begins and ends at the depot; 

 Each customer is visited exactly once by exactly one route; 

 The total demand of the customers assigned to each route does not exceed 

Q; 

 The total duration of each route (including travel and service times) does 

not exceed a specified value L; 

 The total cost of the routes is minimized. 
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A feasible solution for the problem thus consists in a partition of the customers into m 

groups, each of total demand no larger than Q, that are sequenced to yield routes 

(starting and ending at the depot) of duration no larger than L. 

Scheduling 

 Flow-Time Cell Manufacturing 

 Heterogeneous Processor 

Scheduling 

 Workforce Planning 

 Classroom Scheduling 

 Machine Scheduling 

 Flow Shop Scheduling 

 Job Shop Scheduling 

 Sequencing and Batching 

Design 

 Computer-Aided Design 

 Fault Tolerant Networks 

 Transport Network Design 

 Architectural Space Planning 

 Diagram Coherency 

 Fixed Charge Network Design 

 Irregular Cutting Problems 

Location and Allocation 

 Multicommodity 

Location/Allocation 

 Quadratic Assignment 

 Quadratic Semi-Assignment 

 Multilevel Generalized Assignment 

 Lay-Out Planning 

 Off-Shore Oil Exploration 

 

Logic and Artificial Intelligence 

 Maximum Satisfiability 

 Probabilistic Logic 

 Clustering 

 Pattern Recognition/Classification 

 Data Integrity 

 Neural Network |Training and 

Design 

Technology 

 Seismic Inversion 

 Electrical Power Distribution 

 Engineering Structural Design 

 Minimum Volume Ellipsoids 

 Space Station Construction 

 Circuit Cell Placement 

Telecommunications 

 Call Routing 

 Bandwidth Packing 

 Hub Facility Location 

 Path Assignment 

 Network Design for Services 

 Customer Discount Planning 

 Failure Immune Architecture 

 Synchronous Optical Networks 

Production, Inventory and Investment 

 Flexible Manufacturing 

 Just-in-Time Production 

 Capacitated MRP 

 Part Selection 

 Multi-item Inventory Planning 

 Volume Discount Acquisition 

 Fixed Mix Investment 

Routing 

 Vehicle Routing 

 Capacitated Routing 

 Time Window Routing 

 Multi-Mode Routing 

 Mixed Fleet Routing 

 Traveling Salesman 

 Traveling Purchaser 

Graph Optimization 

 Graph Partitioning 

 Graph Coloring 

 Clique Partitioning 

 Maximum Clique Problems 

 Maximum Planner Graphs 

 P-Median Problems 

General Combinational Optimization 

 Zero-One Programming 

 Fixed Charge Optimization 

 Nonconvex Nonlinear 

Programming 

 All-or-None Networks 

 Bilevel Programming 

 General Mixed Integer 

Optimization 

                               Table 3.1 Illustrative Tabu Search Applications 
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3.3.4 Swarm Intelligence 

Swarm Intelligence was introduced in 1989. It is an artificial intelligence technique, 

based on the study of collective behavior in decentralized, self-organized, systems. Two 

of the most successful types of this approach are Ant Colony Optimization (ACO) and 

Particle Swarm Optimization (PSO). In ACO artificial ants build solutions by moving 

on the problem graph and changing it in such a way that future ants can build better 

solutions. PSO deals with problems in which a best solution can be represented as a 

point or surface in an n-dimensional space. The main advantage of swarm intelligence 

[15] techniques is that they are impressively resistant to the local optima problem. 

The typical swarm intelligence system has the following properties: 

 It is composed of many individuals; 

 The individuals are relatively homogeneous (i.e., they are either all identical or 

they belong to a few typologies); 

 The interactions among the individuals are based on simple behavioral rules that 

exploit only local information that the individuals exchange directly or via the 

environment (stigmergy); 

 The overall behavior of the system results from the interactions of individuals 

with each other and with their environment, that is, the group behavior self-

organizes. 

The characterizing property of a swarm intelligence system is its ability to act in a 

coordinated way without the presence of a coordinator or of an external controller. 

Many examples can be observed in nature of swarms that perform some collective 

behavior without any individual controlling the group, or being aware of the overall 

group behavior. Notwithstanding the lack of individuals in charge of the group, the 

swarm as a whole can show an intelligent behavior. This is the result of the interaction 

of spatially neighboring individuals that act on the basis of simple rules. 

Few examples of scientific and engineering swarm intelligence studies. 

 Clustering Behavior of Ants 

 Nest Building Behavior of Wasps and Termites 

 Flocking and Schooling in Birds and Fish 

 Ant Colony Optimization 

 Particle Swarm Optimization 

 Swarm-based Network Management 

 Cooperative Behavior in Swarms of Robots 
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3.3.5 Evolutionary Algorithms 

Evolutionary Algorithms succeed in tackling premature convergence by considering a 

number of solutions simultaneously. In artificial intelligence, an Evolutionary 

Algorithm (EA) is a subset of evolutionary computation, a generic population-based 

meta heuristic optimization algorithm. An EA uses some mechanisms inspired by 

biological evolution: reproduction, mutation, recombination, and selection. Candidate 

solutions to the optimization problem play the role of individuals in a population, and 

the fitness function determines the environment within which the solutions "live" (see 

also cost function). Evolution of the population then takes place after the repeated 

application of the above operators. Artificial evolution (AE) describes a process 

involving individual evolutionary algorithms; EAs are individual components that 

participate in an AE. 

Evolutionary algorithms often perform well approximating solutions to all types of 

problems because they ideally do not make any assumption about the underlying fitness 

landscape; this generality is shown by successes in fields as diverse as engineering, art, 

biology, economics, marketing, genetics, operations research, robotics, social sciences, 

physics, politics and chemistry. 

 

                   Figure 3.4: The process of Evolution Algorithms 

Components of Evolutionary Algorithms: EA‘s have a number of components, 

procedures or operations that must be specified in order to define a particular EA [16]. 

The most important components are 

 Representation (definition of individuals) 

 Evaluation function (or fitness function) 
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 Population 

 Parent selection mechanism 

 Variation operators, Recombination and Mutation 

 Survivor selection mechanism (Replacement) 

Furthermore, to obtain a running algorithm the initialization procedure and termination 

condition must also be defined. 

Types of Evolutionary Algorithms 

 Genetic algorithms 

  Evolutionary programming 

 Evolution strategies 

 Genetic programming 

  Learning classifier systems 

Genetic algorithms are search algorithms based on the mechanics of natural selection 

and natural Genetics. They are based on the Darwin‘s theory of evolution which 

stressed the fact that the existence of all living things is based on the rule of ‗survival of 

the fittest.‘ Darwin also postulated that new breeds or classes living things come into 

existence through the process of reproduction, crossover and mutation among existing 

organisms. 

Genetic algorithms are substantially different to the more traditional search and 

optimization techniques. The main differences are: 

  Genetic algorithms search a population of points in parallel, not from a single 

point. 

 Genetic algorithms do not require derivative information or other auxiliary 

knowledge; only the objective function and corresponding fitness levels 

influence the direction of the search. 

  Genetic algorithms use probabilistic transition rules, not deterministic rules. 

 Genetic algorithms work on an encoding of a parameter set not the parameter set 

itself (except where real-valued individuals are used). 

 Genetic algorithms may provide a number of potential solutions to a given 

problem and the choice of the final is left up to the user. 
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Pseudo-code for a genetic algorithm is as follows:  

 Initialize the population 

 Evaluate initial population 

 Repeat 

                            Perform competitive selection 

                            Apply genetic operators to generate new solutions 

                            Evaluate solutions in the population 

 Until some convergence criteria is satisfied 

An extended discussion of issues involved with the implementation and use of 

evolutionary algorithms is included. Several different types of evolutionary search 

methods were developed independently. These include (a) genetic programming (GP), 

which evolve programs, (b) evolutionary programming (EP), which focuses on 

optimizing continuous functions without recombination, (c) evolutionary strategies 

(ES), which focuses on optimizing continuous functions with recombination, and (d) 

genetic algorithms (GAs), which focuses on optimizing general combinatorial 

problems. 

3.3.6 Neural Networks 

Neural Networks are inspired by biological neuron systems. They consist of units, 

called neurons, and interconnections between them. After special training on some 

given data set Neural Networks can make predictions for cases that are not in the 

training set. In practice Neural Networks do not always work well because they suffer 

greatly from problems of underfitting and overfitting[17]. These problems correlate 

with the accuracy of prediction. If a network is not complex enough it may simplify the 

laws, which the data obey. From the other point of view, if a network is too complex it 

can take into account the noise that usually assists at the training data set while inferring 

the laws. The quality of prediction after training is deteriorated in both cases. The 

problem of premature convergence is also critical for Neural Networks. 
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The building blocks of neural networks 

Neural networks are made of basic units (see Figure 18) arranged in layers. A unit 

collects information provided by other units (or by the external world) to which it is 

connected with weighted connections called synapses. These weights, called synaptic 

weights multiply (i.e., amplify or attenuate) the input information: 

A positive weight is considered excitatory, a negative weight inhibitory. 

 

                                         Figure 3.5: The Basic Neural Unit 

Neural Network Components: 

  Input Layer 

  Hidden Layer 

  Output layer 

  Connections /Arcs 

  Weights 

  Activation functions 

  Training set 

  Learning    

                                Figure 3.6:The Basic Components of Neural Networks 

 

3.3.7 Support Vector Machines 

Support Vector Machines (SVMs) extend the ideas of Neural Networks. They 

successfully overcome premature convergence since convex objective function is used, 

therefore, only one optimum exists. Classical divide and conquer technique gives 

elegant solution for separable problems. In connection with SVMs, that provide 

effective classification, it becomes an extremely powerful instrument.  
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A Support Vector Machine (SVM) performs classification by constructing an N-

dimensional hyper plane that optimally separates the data into two categories. SVM 

models are closely related to neural networks. In fact, a SVM model using a sigmoid 

kernel function is equivalent to a two-layer, perception neural network.  

Support Vector Machine (SVM) [18] models are a close cousin to classical multilayer 

perception neural networks. Using a kernel function, SVM‘s are an alternative training 

method for polynomial, radial basis function and multi-layer perception classifiers in 

which the weights of the network are found by solving a quadratic programming 

problem with linear constraints, rather than by solving a non-convex, unconstrained 

minimization problem as in standard neural network training.  

In the parlance of SVM literature, a predictor variable is called an attribute, and a 

transformed attribute that is used to define the hyper plane is called a feature. The task 

of choosing the most suitable representation is known as feature selection. A set of 

features that describes one case (i.e., a row of predictor values) is called a vector. So the 

goal of SVM modeling is to find the optimal hyper plane that separates clusters of 

vector in such a way that cases with one category of the target variable are on one side 

of the plane and cases with the other category are on the other size of the plane. The 

vectors near the hyper plane are the support vectors. The figure below presents an 

overview of the SVM process. 

             

                                          

 

 

Figure 3.7:Two-Dimensional Example 

Before considering N-dimensional hyper planes, let‘s look at a simple 2-dimensional 

example. Assume we wish to perform a classification, and our data has a categorical 

target variable with two categories. Also assume that there are two predictor variables 

with continuous values. If we plot the data points using the value of one predictor on 

the X-axis and the other on the Y-axis we might end up with an image such as shown 
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below. One category of the target variable is represented by rectangles while the other 

category is represented by ovals [19]. 

                  

                              Figure 3.8: Classification of Support Vectors 

An SVM analysis finds the line (or, in general, hyper plane) that is oriented so that the 

margin between the support vectors is maximized. In the figure above, the line in the 

right panel is superior to the line in the left panel. 
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                                                                                   CHAPTER 4 

                                                           PROBLEM STATEMENT 
 
 

 

The known NP-hardness results imply that for many combinatorial optimization 

problems there are no efficient algorithms that find an optimal solution, or even a near 

optimal solution, on every instance. A heuristic for an NP-hard problem is a polynomial 

time algorithm that produces optimal or near optimal solutions on some input instances, 

but may fail on others. The study of heuristics involves both an algorithmic issue (the 

design of the heuristic algorithm) and a conceptual challenge, namely, how does one 

evaluate the quality of a heuristic.  

We know exact algorithms might need centuries to solve a formidable problem. In such 

cases heuristic algorithms that find approximate solutions but have acceptable time and 

space complexity play indispensable role. In present, all known algorithms for NP-

complete problems are requiring time that is exponential in the problem size. Heuristics 

are a way to improve time for determining an exact or approximate solution for NP-

problems. 

There are many NP-Problems are available in different fields, such as science, 

engineering and technology.  Out of all problems we selected few wellknown problems. 

We are trying to estimate seven heuristics (such as Hill Climbing, Simulated Annealing, 

Swarm Intelligence, Tabu Search, Evolutionary Algorithms, Neural Networks and 

Support vector Machines) for some selected problems. One objective is that, after 

applying different heuristics for a particular NP-problem, a set of guidelines can be 

given that how a particular category of heuristics is better for a particular set of 

problems. 
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                                                                                   CHAPTER 5 

                                                    RESULTS AND DISCUSSION 
 

We have estimated seven Heuristic strategies (Hill Climbing,Simmulated Annealing, 

Swarm Intelligence, Tabu Search ,Evolutionary Algorithms, Neural Networks and 

Support vector Machines )for some well-known problems. The corresponding 

observation for each problem is mentioned below the problem. There is a separate table 

for each problem that compares different Heuristic Strategies for each problem [22, 23, 

and 24]. 

1. Travelling Salesman Problem [14,15,25] 

The Travelling Salesman Problem (TSP) is a simple combinatorial problem [12]. It can 

be stated Very simply: 

 A salesman spends his time visiting n cities (or nodes). In one tour he visits each 

city just once, and finishes up where he started. In what order should he visit 

them to minimize the distance travelled? 

 There exists an edge between every pair of cities expressing the distance 

between the two Corresponding cities. 

 If there are only 2 cities then the problem is trivial, since only one tour is 

possible. In either case the number of solutions becomes extremely large for 

large n, so that an exhaustive search is impractical. 

 

Heuristic Strategy  

Hill Climbing 1. Not effective, Because no agenda is maintained. 

Simulated Annealing 1. Current solution wandering from neighbour to 

neighbour as the computation proceeds. 

2. Examines neighbours in random order. 

3. Schema leaves several operations and definitions 

unspecified. 

4. As the temperature goes down, the probability of 

accepting bad moves decreases. 

Swarm Intelligence(ACO) 1. Ants leave a trail of pheromones when they explore 

new areas. 
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2. The ant who picked the shortest tour will be leaving 

a trail of pheromones inversely proportional to the 

length of the tour. 

3. This pheromone trail will be taken in account when 

an ant is choosing a city to move to, making it more 

prone to walk the path with the strongest pheromone 

trail. 

4. This process is repeated until a tour being short 

enough is found. 

Tabu Search 1. Implementation of tabu search degrades 

substantially as N increases. 

2. Only makes uphill moves when it is stuck in local 

optima. 

Evolutionary Algorithms 1. without the local optimization. 

2. Applying GA to the TSP involves implementing a 

crossover routine, a measure of fitness, and also a 

mutation routine. 

 

Neural Networks 

1. Multiple random starts were allowed. 

2. Best solution they ever found on such an instance 

was still more than17% above optimal. 

3.very sensitive 

4.N
2
 neurons are required 

Support Vector Machines 1.Not tested 

Table 5.1: Shows comparison of different heuristic strategies for Travelling Salesmen 

Problem. 

There are a number of algorithms used to find optimal tours, but none are feasible for 

large instances since they all grow exponentially. We can get down to polynomial 

growth if we settle for near optimal tours. We gain speed and speed at the cost of tour 

quality. So the interesting properties of heuristics for the TSP are mainly speed and 

closeness to optimal solutions.  
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If shorter tours are wanted and significantly more time is available, both simulated 

annealing and genetic algorithms can for many instances find better tours than could be 

found in the same time by performing multiple independent runs of other heuristics. 

Within the running time bounds of these algorithms, no tabu search, simulated 

annealing, genetic, or neural net algorithm has yet been developed that provides 

comparably good tours. 

2. Time Table Problem [26, 27, 28] 

The problem is to design and implement an algorithm to create a semester course time 

table by assigning time-slots and rooms to a given set of courses to be run that semester 

under given constraints. The constraints include avoiding clashes of time-slots and 

rooms, assigning appropriate rooms and appropriate no. of slots and contact hours to 

the courses etc. 

Heuristic Strategy  

Hill Climbing 1. Not effective, Because no agenda is maintained. 

2.It can easily be verified the search space for this kind 

of problem is very large 

3. The best solution within a reasonable small amount of 

time depends on neighbourhoods. 

Simulated Annealing 1.In our experiments we decided to use a reduction 

factor of 0.9 and an initial acceptance probability of 0.8 

to cool down quite slow 

2. Current solution wandering from neighbour to 

neighbour as the computation proceeds. 

3. Examines neighbours in random order. 

4. Schema leaves several operations and definitions 

unspecified. 

5. The cooling factor decrease Factor is set to 0.9. 

Swarm Intelligence(ACO) 1.Not tested 

Tabu Search 1.TS is able to find better solution until the end of the 

computation 

2. Implementation of tabu search degrades substantially 

as N increases. 

3.Only makes uphill moves when it is stuck in local 
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optima 

4.The best regular tabu list length seems to be approx. 

40 elements 

Evolutionary Algorithms 1.without the local optimization 

2. EAs give lower total penalties compared with man-

made schedules. 

3. The best individual of a generation will survive and 5 

% of the individuals. 

4. Every resource list of the individual is subject to 

mutation with a probability of 0.5 %. 

Neural Networks 1. Multiple random starts were allowed. 

2. Best solution they ever found on such an instance was 

still more than17% above optimal. 

3.very sensitive 

4.N
2
 neurons are required 

Support Vector Machines 1.Not tested 

Table 5.2: Shows comparison of different heuristic strategies for Time Table Problem. 

The implementation effectively optimizes the constructed objective function for the 

modelled population, under sufficiently heavy constraints. The execution is reasonable 

for a large problem size, which would not be possible with conventional algorithms. A 

working algorithm of polynomial time complexity has been implemented, where the 

conventional solutions have exponential complexity. The operators used on population 

are performing efficiently. The modelling of the population and a Genetic Algorithm 

are suited to the problem. 

3. Generation Expansion Problem [29, 30] 

Generation expansion planning has historically addressed the problem of identifying 

ideal technology, expansion size, sitting, and timing of construction of new plant 

capacity in an economic fashion and in a manner that ensures installed capacity 

adequately meets projected demand growth. Generation expansion planning is 

challenging problem due to its large-scale, long term, non-linear, and discrete nature of 

generation unit size. Generation expansion planning (GEP) is to determine WHAT 
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generating units should be constructed and WHEN generating units should come on line 

over a long-term planning horizon.  

The criteria are to minimize the total cost and/or maximize the reliability with different 

type of constraints. The total cost is the sum of capital investment and operation cost. 

The constraint includes capacity constraints, energy constraints, and operation 

constraints etc. 

Heuristic strategy  

Hill climbing 1.Not tested 

Simulated Annealing 1. SA iteratively searches the neighbour by adding some 

random number with the current solution. 

The best solution is readily accepted. The worst solution 

is also accepted by comparing with a random number (0, 

1), which avoids trapping in local minima. 

2. In each step, the algorithm picks a random move. If it 

improves the objective function (E>0), it is accepted. 

Otherwise, the bad move is only accepted with a 

probability e
E/T

 

Swarm Intelligence(ACO) 1. Then ants are placed randomly in the first stage and 

allowed to move based on the probability. After the ants 

completed the tour, the objective function and fitness 

function values for the individuals are calculated. 

Tabu Search 1. This reduces the size of neighbourhood. Then the 

combinations between the capacities should be taken as 

the neighbours keeping other two stages unaltered. 

Similarly for the other two stages, the neighbours are 

determined. The candidate list is formed with the 

combination of these neighbors.The best neighbour 

among the candidate list is moved to the ―Tabu list‖ for 

a pre-specified number of generations. 

Evolutionary Algorithms 1. The uniform binary window and head-to-head 

crossover have SR of 60%, whereas the arithmetic 

crossover has 30%.  
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2. without the local optimization. 

Neural Networks 1. Multiple random starts were allowed. 

2. Very sensitive. 

Support Vector Machines 1.Not tested 

Table 5.3: Shows comparison of different heuristic strategies for Generation Expansion 

Problem. 

The emerging technologies, such as Hill climbing, simulated annealing, genetic 

algorithm, neural networks, etc are powerful to solve large scale generation expansion 

planning problems. The advantage of SA approach lies in that it is capable of not only 

handling a mixed-integer nonlinear programming but also searching toward a global 

optimal solution. When we are using GA, the more processors the system uses, the less 

the computation time is required, but the more cost is needed. The number of processors 

used is trade-off between computation speed and cost. 

Therefore we conclude that, Simmulated Annealing approach is the best heuristic for 

finding the global optimum solution. 

4. Vertex Cover Problem [24]. 

In computer science, the Vertex Cover Problem or Node Cover Problem is an NP-

complete problem and was one of Karp's 21 NP-complete problems. It is often used in 

complexity theory to prove NP-hardness of more complicated problems. 

Definition: A vertex cover for an undirected graph G = (V, E) is a subset S of its 

vertices such that each edge has at least one endpoint in S. In other words, for each edge 

ab in E, one of a or b must be an element of S.  

Heuristic Strategy  

Hill Climbing 1. Not effective, Because no agenda is maintained. 

Simulated Annealing 1. Simulated annealing starts initially with an arbitrary 

solution and then repeatedly tries to make improvements 

to it locally. 

2. Current solution wandering from neighbour to 

neighbour as the computation proceeds. 

3. Examines neighbours in random order. 
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4. A new solution is accepted with a probability that is 

based on the difference Qold − Qnew between the 

quality of the old and new solutions and on an 

(artificial) temperature T, which is gradually decreasing 

throughout the process. 

5. Schema leaves several operations and definitions 

unspecified. 

Swarm Intelligence 1.Not tested 

Tabu Search 1. Implementation of tabu search degrades substantially 

as N increases. 

2. Only makes uphill moves when it is stuck in local 

optima. 

Evolutionary Algorithms 1. without the local optimization. 

2. GA starts by generating a random population of 

candidate solutions. At each iteration a population of 

promising solutions is first selected. Variation operators 

are then applied to this selected population to produce 

new candidate solutions. Specifically, crossover is 

applied to exchange partial solutions between pairs of 

solutions and mutation is used to perturb the resulting 

solutions. Here we use uniform crossover and bit-flip 

mutation to produce new solutions.  

2. The algorithm stops when the population reaches a 

stable state. 

Neural Networks 1. Multiple random starts were allowed. 

2. Best solution they ever found on such an instance was 

still more than17% above optimal. 

3.very sensitive 

4.N
2
 neurons are required 

Support Vector Machines 1.Not tested 

Table 5.4: Shows comparison of different heuristic strategies for Vertex Cover 

Problem. 
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Vertex Cover, a well known NP-Complete combinatorial optimization problem having 

practical applications in fields such as networking and scheduling. After comparing 

different heuristics for vertex cover problem, we conclude that either SA or GA produce 

best optimal solution. 

5. Mean Flow Time Open Shop Scheduling [21, 22] 

The open shop scheduling problem can be described as follows. A set of n jobs J1, J2 . . 

., Jn has to be processed on a set of m machines M1, M2, . . . , Mm. The processing of 

job Ji on machine Mj is denoted as operation (i, j), and the sequence in which the 

operations of a job are processed on the machines is arbitrary. All processing times of 

the operations are assumed to be given in advance. Each machine can process at most 

one job at a time and each job can be processed on at most one machine at a time. 

Heuristic Strategy  

Hill Climbing 1. Not effective, Because no agenda is maintained. 

Simulated Annealing 1. Current solution wandering from neighbour to 

neighbour as the computation proceeds. 

2. A non-improving neighbor is accepted with probability 

exp(−∆/T ) 

3. Schema leaves several operations and definitions 

unspecified. 

4. As the temperature goes down, the probability of 

accepting bad moves decreases. 

Swarm Intelligence 1.Probabilistic solution construction mechanism using the 

pheromone model (‗pheromone trail parameters‘) 

2. A number of ants probabilistically construct solutions 

3. Application of a randomized Beam-Append procedure 

(for generating nondelay schedules) 

4. Pheromone values encode for any two related 

operations the desirability to perform a particular 

operation first 

5. Use of an iterative procedure to improve the 

constructed solutions. 
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Tabu Search 1. Implementation of tabu search degrades substantially 

as N increases. 

2. Only makes uphill moves when it is stuck in local 

optima. 

3. Search moves in each iteration to the best non-tabu 

neighbour investigated. 

4.Tabu restriction is enforced by a neighbourhood-

specific tabu list 

5.Neighbourhoods: same as for simulated annealing 

6. Constant length of the tabu list 

Evolutionary Algorithms 1. Without the local optimization. 

2. Search technique based on the mechanism of natural 

selection and genetics 

3. Initial population: randomly generated non-delay 

schedules 

4. Chromosome (solution) representation: rank matrix of 

a sequence graph 

5.Genetic operators: 

(1) Mutation: change the rank of exactly one operation 

and maintain the relative order of the other operations 

(2) Crossover: exchange the ranks of a randomly chosen 

set of operations, maintain the relative order of the 

remaining operations, and combine both parts to a 

feasible rank matrix 

Neural Networks 1. Multiple random starts were allowed. 

2. Best solution they ever found on such an instance was 

still more than17% above optimal. 

3.Very sensitive 

4.N
2
 neurons are required 

Support Vector Machines 1.Not tested 

 

Table 5.5: Shows comparison of different heuristic strategies for Mean Flow Time 

Open Shop Scheduling.  
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For the open shop problem with mean flow time minimization, the choice of an 

appropriate constructive solution procedure strongly depends on the relationship 

between the number n of jobs and the number m of machines while the processing 

times have less influence. Constructive heuristics based on matching procedures do not 

work well for mean flow time minimization.  

For n < m 

We conclude that in most cases, the genetic algorithm outperforms the other algorithms, 

but for several problem types simulated annealing is on the first rank. However, the 

computational times for the genetic algorithms are considerably larger than for 

simulated annealing (although the same number of solutions has been generated). 

 For n = m 

For the majority of problems, the genetic algorithms yield clearly the best results. Both 

variants, i.e. the initial population filled with random solutions as well as including 

some solutions obtained by the constructive algorithms contribute best values. The tabu 

search algorithm is not competitive and yields only marginal improvements of the best 

constructive solution. Summarizing, the genetic algorithms are clearly the best among 

all algorithms tested. 

For n > m 

We conclude that the genetic algorithm with an initial population using some of the 

constructive algorithms gives the best results, followed by simulated annealing. 
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                                                                                                           CHAPTER 6 

                                                                              CONCLUSION 

 

NP-Problems are problems that are not currently solvable in polynomial time. However, 

they are polynomially equivalent in the sense that any NP-Problem can be transformed 

into any other in polynomial time. 

The following techniques can be applied to solve computational problems in general, 

and they often give rise to substantially faster algorithms: 

 Approximation: Instead of searching for an optimal solution, search for an 

"almost" optimal one.  

 Randomization: Use randomness to get a faster average running time, and 

allow the algorithm to fail with some small probability. See Monte Carlo 

method.  

 Restriction: By restricting the structure of the input (e.g., to planar graphs), 

faster algorithms are usually possible.  

 Parameterization: Often there are fast algorithms if certain parameters of the 

input are fixed.  

 Heuristic: An algorithm that works "reasonably well" in many cases, but for 

which there is no proof that it is both always fast and always produces a good 

result.  

Out of all these Heuristic is the technique, which finds solutions among all possible 

ones, but they do not guarantee that the best to be found; therefore they may be 

considered as approximate and not accurate algorithms. These algorithms, usually find 

a solution close to the best one and they find it fast and easily. Sometimes these 

algorithms can be accurate, that is they actually find the best solution, but the algorithm 

is still called heuristic until this best solution is proven to be the best. 

In our thesis we selected different NP-Problems (Travelling Salesmen Problem (TSP), 

Time Tabling Problem (TTP), Generation Expansion Problem (GEP), Vertex Cover 

Problem (VCP), Mean Flow Time Open Shop Scheduling Problem) from different 

fields and we estimated seven Heuristic strategies (such as Hill Climbing, Simmulated 

Annealing, Swarm Intelligence, Tabu Search, Evolutionary Algorithms, Neural 
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Networks and Support vector Machines) for the above mentioned problems. We made a 

set of guidelines can be given that how a particular category of heuristics is better for a 

particular set of problems. We made an overall conclusion as follows: 

Hill-climbing techniques belong to the class of Local search. Such algorithms 

consistently replace the current solution with the best of its neighbours if it is better 

than the current. Hill-climbing algorithm is effective, but it has a significant drawback 

called premature convergence. Since it is ―greedy‖, it always finds the nearest local 

optima of low quality. The goal of modern heuristics is to overcome this disadvantage. 

Simulated annealing algorithm, uses an approach similar to hill-climbing, but 

occasionally accepts solutions that are worse than the current. The probability of such 

acceptance is decreasing with time. SA is the best approach for finding the optimal 

solution for TSP and Minimmum Vertex Cover problem. 

Tabu search extends the idea to avoid local optima by using memory structures. The 

problem of simulated annealing is that after‖jump‖ the algorithm can simply repeat its 

own track. Tabu search prohibits the repetition of moves that have been made recently. 

Swarm intelligence is an artificial intelligence technique, based on the study of 

collective behaviour in decentralized, self-organized, systems. Two of the most 

successful types of this approach are Ant Colony Optimization (ACO) and Particle 

Swarm Optimization (PSO). In ACO artificial ants build solutions by moving on the 

problem graph and changing it in such a way that future ants can build better solutions. 

PSO deals with problems in which a best solution can be represented as a point or 

surface in an n-dimensional space. The main advantage of swarm intelligence 

techniques is that they are impressively resistant to the local optima problem. 

Any application of GAs involves a selection of an appropriate representation of sample 

points in the function space, and the creation of a function that describes the behaviour 

of the space to be searched. Unfortunately, many NP-Complete problems have 

constrained spaces that do not map well to bit string representations. The TSP is a 

classic example of such a problem. 

Any application of neural networks involves selection of an appropriate network 

representation. Furthermore, a constraint satisfaction approach requires a specification 

of the domain specific constraints. These constraints must be mapped into an energy 
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function that adequately describes the space to be searched. In general, these tasks can 

be difficult. The problem of premature convergence is also critical for Neural Networks. 

Support Vector Machines (SVMs) extend the ideas of Neural Networks. They 

successfully overcome premature convergence since convex objective function is used, 

therefore, only one optimum exists. 

After analysing the different heuristics for some well-known problems, we conclude 

that, based on the problem characteristics different heuristics are efficient for different 

problems. We can‘t say particular heuristic is efficient for all NP-problems. Based on 

problem criteria and characteristics one of the heuristic is efficient.  

For the TSP , If shorter tours are wanted and significantly more time is available, both 

simulated annealing and genetic algorithms can for many instances find better tours 

than could be found in the same time by performing multiple independent runs of other 

heuristics. Within the running time bounds of these algorithms, no tabu search, 

simulated annealing, genetic, or neural net algorithm has yet been developed that 

provides comparably good tours. 

For Time Table problem, the execution is reasonable for a large problem size, which 

would not be possible with conventional algorithms. A working algorithm of 

polynomial time complexity has been implemented, where the conventional solutions 

have exponential complexity. The operators used on population are performing 

efficiently. The modelling of the population and a Genetic Algorithm are suited to the 

problem. 

For Generation Expansion Problem, The advantage of SA approach lies in that it is 

capable of not only handling a mixed-integer nonlinear programming but also searching 

toward a global optimal solution. When we are using GA, the more processors the 

system uses, the less the computation time is required, but the more cost is needed. The 

number of processors used is trade-off between computation speed and cost. Therefore 

SA approach is suitable for Generation Expansion Problem. 

Like this for different problems different heuristics are suitable to find best optimal 

solution. 
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